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Infrared Action Detection in the Dark via
Cross-Stream Attention Mechanism
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Abstract—Action detection plays an important role in the
field of video understanding and attracts considerable attention
in the last decade. However, current action detection methods
are mainly based on visible videos, and few of them consider
scenes with low-light, where actions are difficult to be detected
by existing methods, or even by human eyes. Compared with
visible videos, infrared videos are more suitable for the dark
environment and resistant to background clutter. In this paper,
we investigate the temporal action detection problem in the dark
by using infrared videos, which is, to the best of our knowledge,
the first attempt in the action detection community. Our model
takes the whole video as input, a Flow Estimation Network (FEN)
is employed to generate the optical flow for infrared data, and it is
optimized with the whole network to obtain action-related motion
representations. After feature extraction, the infrared stream and
flow stream are fed into a Selective Cross-stream Attention (SCA)
module to narrow the performance gap between infrared and
visible videos. The SCA emphasizes informative snippets and
focuses on the more discriminative stream automatically. Then
we adopt a snippet-level classifier to obtain action scores for all
snippets and link continuous snippets into final detection results.
All these modules are trained in an end-to-end manner. We
collect an Infrared action Detection (InfDet) dataset obtained
in the dark and conduct extensive experiments to verify the
effectiveness of the proposed method. Experimental results show
that our proposed method surpasses the state-of-the-art temporal
action detection methods designed for visible videos, and it also
achieves the best performance compared with other infrared
action recognition methods on both InfAR and Infrared-Visible
datasets.

Index Terms—Infrared video, temporal action detection, selec-
tive cross-stream attention.

I. INTRODUCTION

TEMPORAL action detection, which aims to detect tem-
poral boundaries for all action instances in untrimmed

videos, plays an important role in the field of video under-
standing and attracts considerable attention due to its broad
applications in surveillance video analysis, video retrieval,
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Fig. 1. Illustration of the action in different modalities in the dark. We
compare the action ‘drop’ under visible imaging and infrared imaging,
respectively. It is hard to recognize in visible imaging but obvious for infrared
imaging.

autonomous driving, human-computer interaction, video rec-
ommendation, etc. However, current temporal action detection
methods are mainly based on visible videos and few of them
consider scenes with low-light, especially in the dark. In such
scenes, actions are difficult to be detected by existing methods,
or even by human eyes. Compared with visible videos, infrared
videos are more suitable for the dark environment [1] and
resistant to background clutter, as shown in Fig. 1.

Although there have been many works for infrared video
analysis, most of them focus on the action recognition task,
which only processes the trimmed video and predicts the
corresponding action category. In this paper, we investigate
the temporal action detection problem in the dark by using
infrared videos, which is, to the best of our knowledge, the
first attempt in the action detection community. To address
this problem, a straightforward way is directly applying the
detection framework designed for visible videos to infrared
videos. However, there is still a large gap between infrared and
visible videos so that current state-of-the-art methods degrade
significantly when applied to infrared videos. To narrow this
gap, we design a Selective Cross-stream Attention (SCA)
module, which can flexibly prefer the discriminative stream
and enhance features using the temporal attention mechanism
across streams. Besides, we construct a light Flow Estimation
Network (FEN) and integrate it into our model to adaptively
generate the optical flow. Then we optimize it with the whole
model jointly to obtain the action-related representation. Our
designs are based on the following observations.

First, unlike the visible videos, the infrared videos lack
the fine texture information, which is caused by the physical
properties of the thermal imaging system. Existing infrared
action analysis methods routinely adopt the multi-stream
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(a) The infrared image and corresponding optical flow of one ‘hug’ instance.

(b) The infrared image and corresponding optical flow of another ‘hug’
instance.

Fig. 2. The infrared images and optical flows of two ‘hug’ action instances.
In (a), the appearance information in the infrared image is more discriminative
than optical flow, while (b) is the opposite.

framework to learn video representations [2]–[5], like using
original images, optical flow, OF-MHI (the Motion-History
Images [6] of the optical flow), etc. For these methods, a
fixed operation is usually adopted to combine the outputs
of different streams, e.g. concatenation, summation, pooling,
etc. These hard operations are not adaptive for variations
of infrared imaging characteristics and scenes. For example,
as shown in Fig. 2, when performing the action of ‘hug’,
the infrared video could have salient action characteristics,
or sometimes the opposite, due to the difference in action
amplitude and the influence of the movement from surrounding
objects. Thus, the model should be adaptive for different
features in the multi-stream framework. In this paper, we
propose the SCA module for flexible feature combination and
enhancement. It has a selective head for preferring the infrared
stream or flow stream and an attention mechanism to enhance
the long-term temporal information across two streams. The
attention mechanism has been broadly used and verified in
the video analysis community [7]–[9]. The difference between
our work and these methods is that they only apply it on the
identical feature and do not consider attention across different
streams.

Second, existing temporal action detection methods in the
visible domain routinely use optical flow to improve detection
performance, but they compute optical flow independently
apart from the whole model, which does not consider the
relationship between the optical flow and the target task. Flow

estimation networks [10], [11] can be integrated into the whole
framework and jointly optimized to improve performance,
but due to the introduction of a large number of parameters
and increasing the difficulty of optimization, they are not
adopted by current temporal action detection frameworks.
Based on this observation, we design FEN for optical flow
estimation. More specifically, we adopt an encoder-decoder
architecture like FlowNet [10], but it is much lighter, which
can be integrated into our model and optimized with other
components.

Our contributions are summarized as follows:
• We propose an end-to-end infrared temporal action de-

tection framework for low-light scenes. An SCA module
and a jointly trained FEN are designed for narrowing
the performance gap between visible videos and infrared
videos.

• To well support researches on the infrared action de-
tection problem in dark scenes, we collect an Infrared
action Detection (InfDet) dataset. We select three typical
actions, including ‘fight’, ‘drop’, and ‘hug’, to make our
research closer to the real application.

• We perform extensive experiments on the InfDet dataset
and other infrared action recognition datasets, and the ex-
perimental results verify the effectiveness of our method.

The remainder of this paper is organized as follows. Section
II briefly reviews related works on action recognition and
action detection. Section III introduces our proposed method in
detail. Section IV introduces our dataset and exhibits extensive
experiments to verify the effectiveness of our method. Section
V concludes this paper.

II. RELATED WORK

A. Action Recognition

Action recognition is the foundation of action detection,
which aims to classify a given video clip. In the visible
domain, action recognition has been rapidly developed in
recent years benefited from deep learning technologies like
Convolutional Neural Networks (CNNs). Simonyan and Zis-
serman [12] designed a two-stream network to utilize both the
RGB and optical flow stream independently, and fused their
scores for final prediction. Tran et al. [2] proposed to model
spatio-temporal information using 3D CNNs. To decrease the
computation, R(2+1)D [13] decomposed the 3D filters into
a spatial filter and a temporal filter. Carreira and Zisserman
[14] inflated the weights from pre-trained 2D CNNs, which
can leverage both the successful design and solid parameters
of deep image classification architecture. Sun et al. [15]
proposed the optical flow guided feature to generate compact
motion representations. More recently, a novel 4D architecture
[16] was proposed to model the long-range spatio-temporal
representation. Besides, RNN based approaches [8], [17] were
also popular to model the spatio-temporal representation in
videos.

For the infrared video, it is crucial to learn informative
and efficient feature representations. Since infrared frames are
insufficient for texture detail, it is natural to adopt the multi-
stream architecture. For the early investigation, Gao et al. [5]
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employed low-level features such as HOG3D [18], 3DSIFT
[19], Dense-Traj [20] etc. for infrared action recognition. They
further proposed a two-stream framework based on 2D CNNs
to extract extra features like optical flow and OF-MHI [21].
Some later methods adopted deeper networks than the previous
works. Jiang et al. [22] designed a two-stream network using
C3D [2]. They added a discriminative code layer on the top
of the 3D CNNs to generate class-specific representations. Liu
et al. [23] proposed a cross-dataset registration and generation
framework. They extracted iDT [24] features for infrared data
and visible data, respectively. Then they aligned and mapped
features to a latent space for feature expression through an
encoder. Finally, the SVM model was used for classification.
This kind of registration and feature expression structure is
well designed, but it can not be optimized together with
the classifier using gradient descent manner. Recent methods
mainly pursued richer representation by increasing the number
of input streams. In the fatigue driving detection task, Ma et
al. [4] tackled infrared images, optical flow, and OF-MHI via
a three-stream architecture composed of three 2D networks.
Then they concatenated these features and followed a 3D
network. Liu et al. [3] proposed a global temporal representa-
tion and applied a three-stream framework to consider local,
global, and spatio-temporal information together. Imran et al.
[25] generated the stacked dense flow difference image and
stacked saliency difference image from the infrared video, and
proposed a four-stream framework consisted of CNN and RNN
modules. In this paper, we explore an effective way to generate
optical flow and obtain discriminative features automatically,
with only input the single infrared stream.

B. Action Detection

Generally, the action detection task involves temporal action
detection and spatio-temporal action detection. The former
aims to detect the temporal boundaries and action categories
for instances of specified actions, while the latter needs to
further localize the spatial region where the action occurs.

1) temporal action detection: Localizing actions in the
temporal dimension is similar to object detection in the spatial
space. Therefore, temporal action detection methods usually
follow the advanced framework of object detection, and it can
be divided into two-stage methods and one-stage methods.

For two-stage methods, a large number of region proposals
that may contain actions are generated firstly, and then the
features corresponding to these regions are fed into a classifier
and regressor to obtain the final predictions, including the
action labels and temporal boundaries. The performances of
these algorithms depend on the quality of the generated pro-
posals, which makes current researches mainly focus on how
to generate high-quality proposals. Shou et al. [26] employed
a binary classifier to sort the proposals generated by the sliding
window and then filtered them. Gao et al. [27] used the idea
of boundary regression to precisely adjust the location of the
sliding window beyond the binary classifier. Xu et al. [28]
followed the framework of Faster R-CNN [29] and proposed
an end-to-end architecture based on 3D CNNs. They extracted
features for the input video and adopted the anchor-based

method to generate proposals. After that, they applied the
classification head and regression head to recognize actions
and refine boundaries of actions, respectively. Besides, Zhao et
al. [30] proposed an actionness score group method according
to the watershed algorithm for proposal generation, which
improved the efficiency significantly. More recently, Lin et
al. [31] directly predicted the possible start and end locations
on the actionness curve and generated proposals by matching
these locations. In [32], a boundary matching mechanism was
further proposed to improve the quality and efficiency of
proposal generation. The sliding window based methods can
cover the entire video and the actionness curve method can
accurately locate actions. Gao et al. [33] proposed to combine
them by using a complementary classifier. Besides, some other
methods focused on modifying the detection strategy. Chao
et al. [34] proposed a multi-scale architecture to align the
receptive field with the action duration through the multi-
tower structure and dilated convolutions. Zeng et al. [35]
used a graph to model the relationship between proposals, and
aggregated their features by a graph convolutional network.

Although two-stage methods can achieve better detection
accuracy, they are complicated and slower in the inference
stage. One-stage methods directly generate action categories
and boundaries from the video simultaneously. Lin et al. [36]
generalized the idea of SSD [37]. They extracted the snippet-
level features, and then adopted 1D convolution layers for
predicting localization offsets and action categories. Long et
al. [38] utilized the characteristics of the Gaussian kernel to
model the action composition. Piergiovanni et al. [39] also
proposed a model using gaussian kernels. They constructed
a convolutional module called temporal Gaussian mixture (T-
GM) layer, which can capture longer temporal dependencies,
to replace the traditional convolutional layer. Also, they used
a soft attention mechanism to learn the parameters of the
mixed gaussian kernel, which makes the TGM layer pay
more attention to the periods that are helpful for the final
classification. They achieved state-of-the-art performance on
THUMOS’14 [40] dataset.

The above deep-learning-based temporal detection methods
for visible videos have been broadly investigated, but there is
no method to apply them to infrared data currently. Unlike
these methods designed for the visible domain, we focus on
generalizing this task to the infrared domain and narrow the
large gap between different modalities.

2) spatio-temporal action detection: For spatio-temporal
action detection, most of current frameworks implement it by
two steps—frame-level detection and linking. Hou et al. [41]
generalized the Faster R-CNN [29] architecture and linked
action tubes across video clips. Huang et al. [42] explored an
online approach for action detection and prediction. Köpüklü
et al. [43] used a unified framework for frame-level action
detection, which was inspired by the one-stage object detector
in the image level. Some methods [7], [44], [45] investigated
the relationship between objects and context. Duarte et al. [46]
proposed an integrated framework to train the model end-to-
end. It generalized the capsule network [47] from 2D to 3D,
and directly processed the input video to get the final results.
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Fig. 3. Overview of our proposed framework, which is composed of five modules: Flow Estimation Network (FEN), feature extractor, Selective Cross-stream
Attention (SCA) module, classifier, and post-processing.

III. METHODOLOGY
The framework of our proposed method is illustrated in Fig.

3. It takes the whole video as input, i.e., {I1, · · · , IT }, I ∈
Rh×w, where h × w is the spatial size of each frame and T
denotes the video length, namely the number of frames. The
original infrared frames are gray images, and we copy them
three times in the channel to get the shape of h × w × 3.
We employ a light architecture called Flow Estimate Network
(FEN) to estimate the optical flow i.e., {F1, · · · , FT−1}, F ∈
Rh×w×2 for each timestamp t, where Ft is computed from
infrared video frames i.e., It and It+1. Then we follow
a feature extractor (e.g. the I3D [14] network) to extract
the feature for every l-frames snippet of {I1, · · · , IT } and
{F1, · · · , FT }, respectively. We set l = 8 in this paper. Let
XI ∈ RT ′×d be the infrared feature and XF ∈ RT ′×d be the
flow feature. d is the output dimension of 3D CNNs. T ′ is the
temporal length of the output feature, which can be computed
as T

l . After feature extraction, both the infrared feature and
flow feature are fed to SCA module to obtain the enhanced
feature Y ∈ RT ′×d using a generalized attention mechanism.
We further feed Y into the snippet-level classifier to get action
scores S ∈ RT ′×C , where C is the number of action classes.
Finally, we link these snippet-level predictions to generate final
detection results.

A. Flow Estimation Network

The two-stream architecture is compatible with the infrared
data, and it has been used in many methods [1], [5], [22]
since the infrared video is insufficient in detailed texture
information. The traditional optical flow estimator is off-the-
shelf and can not be optimized jointly with neural networks.
Meanwhile, current deep-learning-based flow estimators, like
FlowNet [10] and FlowNetV2 [11], introduce too many param-
eters and computations. Thus, we design a lightweight network

to estimate the optical flow, which guarantees controllable
computations and training difficulties for our model.

Our FEN is specified in Table I. The dimensions of k-
ernels, output channels, stride, and padding are formed as
{k × k, nk, smpn}. For convolutional layers and pooling
layers, smpn means stride=m and padding=n. Res layers in
Table I follow the skip connection in [48]. The InsN means
instance normalization layer [49], and ReLU means rectified
linear units [50]. We concatenate adjacent frames It, It+1

along channels as the input. The encoder network maps the
input data into a latent feature space to obtain the feature
encoding. The estimated optical flow Ft for It and It+1 can
be formulated as:

Ft = tanh (Decoder (Encoder (concat (It, It+1)))) . (1)

After that, we restore the resolution and detailed texture
information by the decoder network and then generate the
optical flow using a 1 × 1 convolutional layer. To reduce
computations, the output resolution of FEN is a quarter of the
input frame, and it will be restored to the original resolution
after flow estimation. We use a tanh function to limit the
output values to (−1, 1), which keeps the same preliminary
normalization as infrared frames.

Inspired by [51], we jointly train FEN with the action
classification loss. It helps to optimize the whole framework
end-to-end, and the FEN will focus on task-related regions
and ignore the background clutter. More details for training
can be seen in Section III-D. After optical flow estimation,
we use two I3D networks [14] to extract the infrared feature
XI and the flow feature XF , respectively.

B. Selective Cross-stream Attention Module

Considering the entire input video, we can localize the
scope of each action from a global perspective as long as
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TABLE I
THE SPECIFIC CONFIGURATION OF THE FEN ARCHITECTURE

Stage layer Specification output size
input - - 6×56×56

Encoder

conv 1
conv:{7×7, 64, s2, p3}

InsN
ReLU

64×28×28

pool 1 max,3×3, s2p1 64×14×14

Res 1

conv:{3×3, 128, s1p1}
InsN
ReLU

conv:{3×3, 128, s1p1}
InsN
ReLU

128×14×14

Res 2

conv:{3×3, 128, s2p1}
InsN
ReLU

conv:{3×3, 128, s1p1}
InsN

128×7×7

Res 3

conv:{3×3, 128, s1p1}
InsN
ReLU

conv:{3×3, 128, s1p1}
InsN

256×7×7

Res 4

conv:{3×3, 128, s1p1}
InsN
ReLU

conv:{3×3, 128, s1p1}
InsN

256×7×7

Decoder
deconv 1

transconv:{4×4, 128, s2p1}
InsN

LeakyReLU
128×14×14

deconv 2
transconv:{4×4, 64, s2p1}

InsN
LeakyReLU

64×28×28

deconv 3
transconv:{4×4, 32, s2p1}

InsN
LeakyReLU

32×56×56

flow prediction flow conv conv:{1×1, 3, s1p0} 3×56×56

the computation and storage are sufficient. However, since
the actions are submerged in massive unrelated background
frames, it is necessary to measure the relationship of each
snippet in the temporal dimension and enhance the combined
feature based on these relationships. To effectively achieve the
above properties, the SCA module is designed for leveraging
both infrared and flow features. As shown in Fig. 4, our SCA
module consists of two parts—a selective head and a cross-
attention module.

1) Selective head: We design a selective head to automat-
ically prefer different modalities. As shown in the left of Fig.
4, we feed the infrared feature XI and the flow feature XF

as input. We concatenate them alone the channel and denote
the output feature as Xc, and then we feed it into a regression
network consisting of convolutional layers and fully connected
layers to obtain a weighted scalar W . The sigmoid function
is used to limit W to the range (0, 1). We calculate two
complementary streams for cross-attention as follows:

X1 = XI ·W +XF (1−W ) , (2)
X2 = XF ·W +XI (1−W ) , (3)

where we denote X1 as the mainstream and X2 as the auxiliary
stream, respectively. The auxiliary stream is used to calculate
attention maps in the next step. In this manner, the input of
the cross-attention module is adaptive for different occasions

that either infrared or flow feature is more discriminative.

2) Cross-attention: Self-attention is derived from [52] and
can be applied in many other video analysis methods [7], [53].
It can enhance the feature for an input sequence by relating
different positions in the temporal or spatio-temporal axis,
and it aims to capture the global dependencies of features.
However, in the self-attention mechanism, the input feature
can be infrared feature XI or flow feature XF , but it can
not directly utilize the two-stream data. When considering two
streams, previous models [31], [36], [39] adopted some simple
fusion strategies, like late fusion, summation, concatenate, etc.
But these methods treat each snippet-level feature equally,
without considering the different impact of snippets from
another stream. Furthermore, based on the basis of self-
attention, we generalize it to process the two-stream data. Be-
cause we leverage the correlation of two features to calculate
the attention map, which corresponds to the self-correlation
concept in the self-attention mechanism, we call it the cross-
attention mechanism.

The implementation of the cross-attention mechanism is
simple, which only needs to change the input data of
the self-attention. Specifically, as shown in the right part
of Fig. 4, given input features X1 and X2, we regard
X1 as the auxiliary stream, and X2 as the mainstream.
First, we apply three 1 × 1 convolutional layers named
query conv, key conv, value conv for input feature to re-
duce the channels d. The output features are formulated as
follows:

Fq = query conv (X1) , (4)
Fk = key conv (X2) , (5)
Fv = value conv (X1) . (6)

The dimension for Fq, Fk, Fv is T ′ × d′, where d′ = d
8 . Then

a matrix multiplication between the transpose of Fq and Fk

is performed to produce a matrix G ∈ RT ′×T ′
, which can be

seen as the cross-correlation across time and streams:

G = FkFq
T . (7)

The attention map can be produced by normalizing each row
of G using a softmax function:

Aij =
exp (Gij)∑T ′

j=1 exp (Gij)
, (8)

where Aij is a score that measures the jth snippet’s impact
on the ith snippet. Gij represents the inner product between
ith vector of Fk and jth vector of Fq . To impose this impact
to the original feature, a matrix multiplication between A and
Fv is carried out. The enhanced output feature combines this
result with the original input features:

P = AFv, (9)
Y = γP +X, (10)

where P denotes the weighted feature X1 that relies on
each snippet’s impact of the X2. Thus, it contains the global
relationship across X1 and X2. We add this weighted feature
to X2. γ is a learnable scalar, and we set it to 0 at the beginning
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Fig. 4. Illustration of the selective cross-stream attention module. Left: We utilize a selective head to determine the mainstream and auxiliary stream
automatically. XI denotes the RGB stream and XF is the flow stream. Right: The cross-attention module accepts two streams as input and computes the
attentions of different snippets across streams. X1 is the auxiliary stream for calculating attention map, and X2 is the mainstream to be enhanced.

of the training phase.

C. Action detection

Fig. 5. Illustration of the detection pipeline. The snippet-level features are fed
into temporal convolution layers and fully connected layers to obtain action
scores. We generate detection results by grouping continuous snippets and
filtering short detections.

For the enhanced feature Y , we use a snippet-level classifier
to get the class-specific score S for each snippet at timestamp
t ∈ {1, · · ·T ′}. We adopt the commonly-used action score
based procedure for the final detection. Specifically, as shown
in Fig. 5, we first feed the enhanced feature into several
TGM layers to capture the long-term temporal representation.
We also adopt the super-event [54] branch, which has been
verified effective for capturing latent representation between
actions. The output features are concatenated with the o-
riginal feature in the channel for an embedded feature i.e.,
Ye ∈ RT ′×(2×d+C). Then we followed a global max pooling
and two fully connected layers to obtain snippet-level action
scores as follows:

S = fc(maxpool(Ye)). (11)

The final detection results are generated by aggregating
continuous snippets that have larger scores than the action
specified threshold of thc. We remove detection results with
too short durations. As shown in the upper right of Fig. 5,
there are three action instances belonging to action c, and their
durations are u1, u2, u3, respectively. We only output u1 and
u3 since u2 < uc, where uc is the half of the average duration
in the training set.

D. Loss Function

We have two subtasks in our framework, i.e., flow esti-
mation and snippet-level classification. For classification, we
minimize the binary cross-entropy loss:

Lcls = −
1

T ′

∑
t,c

Ŝt,c log (St,c) +
(
1− Ŝt,c

)
log (1− St,c) ,

(12)

where Ŝt,c is the ground truth label, which is 1 if action c is
occurring at time t. St,c is the output of our model for class c at
time t. Since there is no ground truth flow for infrared videos,
we use the optical flow generated by the TV-L1 algorithm [55]
as ground truth F̂ . Then we compute the L1 loss:

Lflow =
1

T

∑
t

∑
i,j

|Ft (i, j)− F̂t (i, j) |. (13)

Thus, the total loss is computed as L = Lcls+αLflow, which
is the sum of classification loss and flow estimation loss with
a weight factor α. We set α as 0.7.

IV. EXPERIMENTS

In this section, we first introduce the proposed dataset
and related evaluation metrics used in our experiments. And
then we present the implementation details. After that, we
compare the proposed method with the state-of-the-art action
detection methods designed for visible videos on the proposed
dataset. Additionally, we evaluate our SCA module and jointly
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trained FEN in the ablation study. Qualitative visualization
and extended experiments on other infrared action recognition
datasets are also conducted to further validate the effectiveness
of our method.

A. Dataset and Evaluation Metric

1) Dataset: To evaluate the temporal action detection meth-
ods for infrared videos, we collect a dataset called InfDet. It is
derived from 11 hours of infrared videos and densely sampled
from the night environment. The frame resolution is 293×256
for each infrared video. Since the original videos are too long,
we divide them into 234 video clips. For every single video
clip, we provide multi-instance annotations and all instances
in this clip belong to the same action. Each action instance
only occupies an average 5.5% duration of this clip. The
minimal, maximal, and average durations of video clips are
24.08s, 108.56s, 57.68s, respectively. The distribution of action
durations is shown in Table II. We note that some existing

TABLE II
DURATION DISTRIBUTION OF ACTION INSTANCES PER CLASS

Action Duration
0-5s 5-10s >10s

drop 279 2 0
fight 75 123 12
hug 332 17 3

video analysis benchmarks [56]–[58] contain a large number
of infrared videos. However, most of them are captured by
normal cameras with the near-infrared (NIR) device, which is
quite different from ours, namely the thermal infrared sensor.
As shown in Fig. 6, we compare InfDet dataset with NTU
RGB-D 120 [56], which captured by Kinect V2 cameras. To
get thermal infrared videos, we mainly consider the night
scenes at distance, which is intractable both for RGB and
ordinary NIR cameras (e.g. Kinect V2).

2) Metrics: A satisfactory prediction of the action detection
model should meet two criteria: 1) the predicted action cate-
gory is consistent with the ground truth action; 2) the temporal
Intersection over Union (tIoU) is large enough. The definition
of the IoU is:

IoU(ai, âj) =
ai
⋂
âj

ai
⋃
âj
, (14)

where the âj is the ith instance of ground truth actions
Â = (â1, â2, · · · ) and ai is the jth instance of predicted
actions A = (a1, a2, · · · ). The tIoU computes the intersection
and union of actions on the temporal dimension. Similar
to the evaluation of visible temporal action detection, we
use mean Average Precision (mAP) as the metric, where
the Average Precision (AP) is calculated on each action. A
predicted action is considered to be correct if its tIoU with
the ground truth instance is larger than a certain threshold,
and the predicted category is the same as the corresponding
ground truth instance. As the same as THUMOS14 [40], we
choose tIoU thresholds from 0.1, 0.2, 0.3, 0.4, 0.5 on our
InfDet dataset for evaluation.

B. Implementation details

Our model is implemented by the Pytorch framework. For
the ground truth of FEN, we utilize the optical flow computed
by TV-L1 and downsample it with factor 4, which can save
the GPU memories and computations. We employ two I3D
networks and load the weights pre-trained on Kinetics-400.
We freeze them both in the training and testing phases to
extract features from infrared videos and estimated optical
flow, respectively. Like the I3D, we resize all input frames
to 224×224 and normalize their values to (-1,1). In the
training phase, we use Adam optimizer with a learning rate of
6× 0.01× batch size

number of samples . The learning rate is decreased
by a factor of 10 if the loss plateaued after 10 epochs. All the
modules are trained in an end-to-end manner with 4 GPUs.
In addition, we use the apex library to accelerate the training
procedure. The code and pre-trained weight for this work will
be available at GitHub 1.

C. Comparisons with State-of-the-art Methods

TABLE III
COMPARE WITH STATE-OF-THE-ART METHODS. ‘†’ MEANS THE

BACKBONE IS FINE-TUNED ON INFRARED VIDEOS.

Method mAP@tIoU=α(%)
0.1 0.2 0.3 0.4 0.5

R-C3D [28] 4.8 4.4 4.0 3.6 3.1
BSN [31] 28.9 11.7 5.3 2.8 0.6
BMN [32] 17.6 15.6 13.7 12.4 11.2
TGM [39] 41.83 40.12 38.59 36.70 34.05
†TGM [39] 41.45 40.9 38.35 38.35 34.12

Ours 42.41 42.12 41.69 40.64 37.83
†Ours 44.57 42.09 39.7 38.47 37.09

Since there is no temporal action detection framework
for infrared videos, we compare the proposed method with
state-of-the-art methods in the visible domain, including R-
C3D [28], BSN [31], BMN [32], and TGM [39]. For a fair
comparison, we adopt these methods and fine-tune them on
our InfDet dataset. For all of the compared methods, we use
their official implements and follow the default configurations.
Specifically, the R-C3D utilizes a C3D pre-trained on Sport-
1M [59] as the feature extractor. The Two-Stream Network
[12] pre-trained on ActivityNet [60] is employed by both of
the BSN and BMN. For TGM, the I3D pre-trained on Kinetics
[14] is adopted. Apart from the feature extractor, R-C3D, BSN,
and BMN adopt the two-stage structure, i.e., they first generate
proposals and then add a classification head and a boundary
regression head. TGM generates the final detections directly
based on the snippet-level action scores.

As shown in Table III, our method is superior to other meth-
ods for all the thresholds, and it is 3.78% higher than TGM
with the threshold of 0.5. It demonstrates that our model is
more adaptive for variational characteristics in infrared videos.
The performance of R-C3D is obviously lower than other
methods except for the threshold of 0.5. This phenomenon is
probably caused by three factors: 1) R-C3D uses a shallower

1https://github.com/LannCX/InfDetNet
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Fig. 6. Infrared frames of NTU RGB-D 120 (left) and InfDet (right). The infrared images in NTU RGB-D 120 are more like RGB images, and it only
captures images in a close range. The infrared images in InfDet are quite different from RGB images and can capture images from distance, which is crucial
in the out-door surveillance scenes.

C3D network as the backbone, which has a limited feature
extraction capability compare to other 3D CNNs. 2) The
temporal receptive fields of proposals are relatively short since
the anchor-based temporal range is limited. 3) Except for R-
C3D, all the other methods used additional optical flow data in
the original paper, which can improve performance naturally.
BSN uses a two-stage architecture, and it considers more
information in the proposal generation stage. Surprisingly, the
performance of BSN decreases sharply as the threshold rises,
even lower than R-C3D for the threshold of 0.5. BMN is an
enhanced version of BSN. Under the same framework, a more
effective boundary matching mechanism is adopted for BMN
to improve the quality of proposals. Since the performance
of BMN does not significantly degrade, it can be judged
that the sharply decreased performance of BSN is caused by
the poor quality of proposal generation. Among the visible
temporal detection methods, TGM is the best method that
achieves 34.05% mAP@tIoU=0.5. It is in accordance with the
comparison in the THUMOS’14 dataset. One notable reason
is that TGM utilizes more discriminative features provided by
I3D pre-trained on a large scale dataset, which makes TGM
have more advantages when compared with BSN and BMN.
We further compare the average precision with the threshold
of 0.5 on different actions in Fig. 7. It can be seen that our
method outperforms the other methods for all three classes.
The performance of the ‘hug’ is more than twice of the TGM.

For a more comprehensive comparison, we fine-tune the I3D
on the Infrared-Visible [61] dataset with a learning rate of 0.01,
then we use it as a feature extractor for TGM and the proposed

Fig. 7. Comparison of different methods per class at tIoU=0.5.

method. As shown in TABLE III, the fine-tuned backbone do
not achieve promising improvements, and even worse in some
cases. The fine-tuned TGM can improve mAP@tIoU=0.2,
0.4, 0.5, but fails at 0.1 and 0.3. For the fine-tuned model
of the proposed method, it only improves mAP@tIoU=0.1.
Overall, there are no obvious differences between the original
model and the fine-tuned one. We further analyze the per-class
average precision in Fig. 7 and find that the fine-tuned model
can improve the performance of ‘fight’ and ‘hug’, but is worse
for ‘drop’, which makes the average AP slightly lower than the
original model. Therefore, fine-tuning can transfer the existing
prior information in the visible domain to infrared videos, but
the benefits for actions are different. For some hard examples,
it may even harm the performance.

We measure the running time of our method using a
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machine equipped with an Intel Xeon E5 2.2GHz and 4 Tesla
V100. Timing is averaged over 100 runs, and we fed a 100-
frames dummy video for each run. Finally, it can achieve 290
frames per second (FPS). However, we can not give a direct
comparison for other action detection methods since they
adopt action detection upon the off-the-shelf feature extraction
for both RGB and flow streams, while our framework is end-
to-end. Nevertheless, we can make a brief comparison with
TGM. The classification module in our method keeps the same
computations with TGM, and our cross-stream attention mod-
ule can achieve roughly 3% gain while only introduce 135M
extra multiplication and addition operations per 8 frames.

D. Ablation Study

To investigate the effectiveness of modules used in our
method, we employ TGM as the baseline method, and then
implement different strategies on it. The results are shown
in Table IV, and we report the mAP at tIoU of 0.5 for
an intuitive comparison. For convenience, we use SA, CA
denote self-attention, and cross-attention, respectively. First
of all, feeding infrared or flow data independently can not
achieve high performance, and the self-attention mechanism
influences the performance slightly. The result of the cross-
attention mechanism is close to self-attention since both of
them can not choose the input streams for different occasions.
Our SCA module can get a 2.94% improvement compared
with the two-stream baseline. It is an important component
that can increase the discrimination of features. In addition,
using the task specified optical flow can further bring 0.84%
improvement.

As shown in Table V, we also compare different feature
combination methods. Common multi-stream feature com-
bination for infrared data include late fusion, element-wise
maximization, element-wise minimization, concatenate etc.
For element-wise maximization and minimization, we just
take the two features from different streams and compare
the value of them one-by-one. It is simple to implement and
can obtain promising improvement because the maximum or
minimum operation can increase differences of feature values,
which makes the combined feature more discriminative. For
the concatenate method, we concatenate the two features in
the channel and change the input channel of TGM. That is,
we do not change any values of input features. It does not
bring a significant improvement, and its gain is lower than
simple operations. It is worth mentioning that, we fuse the final
snippet-level classification scores of two streams and it only
gets 0.28% gain. This may be caused by the poor performance
of flow data. We can observe from the Table V that all the
combination methods can get gains upon the baseline. Among
them, our SCA module gets a 3.22% gain, which is higher
than the common feature combination methods.

We compare the number of parameters and theoretical
floating-point operations per second (FLOPs) with other opti-
cal flow estimators. The input frames are resized to 256×256,
and we calculate per frame computation for all compared
methods. During testing, we adopt pytorch implementation

TABLE IV
COMPARISONS OF DIFFERENT MODULES. THE SA, CA DENOTE

SELF-ATTENTION AND CROSS-ATTENTION, RESPECTIVELY.

Method Flow mAP@tIoU=0.5
infrared only - 33.77

flow only TV-L1 25.69
two-stream TV-L1 34.05

infrared+SA - 33.81
two-stream+CA TV-L1 33.82

two-stream+SCA TV-L1 36.99
two-stream+SCA FEN 37.83

TABLE V
COMPARISONS OF DIFFERENT FEATURE COMBINATION METHODS. THE

BASELINE METHOD IS TGM THAT USES INFRARED DATA ONLY.

Method mAP@tIoU=0.5 Gain
baseline 33.77 -

late fusion 34.05 0.28
min 35.49 1.72
max 34.60 0.83

concatenate 34.16 0.39
our SCA 36.99 3.22

of the FlowNetv22 and calculate FLOPs by using OpCounter
toolbox3. We omit the computation of correlation operations
for FlowNetC and LiteFlow v1-v3. As shown in Table VI,
we first show the model size of three variations in FlowNet
[10] and FlowNet V2 [11]. There are two variations in
FlowNet—FlowNetS, and FlowNetC. In FlowNetV2, there
is a lightweight variation FlowNetSD, and other variations
explore more complicated strategies of stacking FlowNetS and
FlowNetC than FlowSD, so we just compare with this one.
As we can see from Table VI, our FEN only introduces much
less parameters and computations than other general learnable
optical flow estimators.

In the second section, we compare with the lightweight
LiteFlowNet [62]–[64]. Our FEN is still better in terms of
model size and FLOPs. Other optical flow estimators, like Lite-
FlowNet v1 and v2, have to design the architecture carefully
to achieve good estimation accuracy, which limits the further
reduction of model size. Different from these methods, we
pursuit light architecture since we need to feed the whole video
as input. The proposed FEN in this paper is mainly designed
to complement the action-related motion representation. Thus
we can force it as light as possible.

E. Qualitative Analysis

1) The detection results: We show three different detections
in Fig. 8, in which the blue lines represent the real actions,
while the green lines are predicted actions. The first and sec-
ond rows are the detections of ‘hug’ and ‘fight’, respectively.
It can be observed that our model is accurate in terms of action
category prediction and boundary localization. Among them,

2https://github.com/NVIDIA/flownet2-pytorch
3https://github.com/wzmsltw/pytorch-OpCounter
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Fig. 8. Qualitative examples of high-quality detections (top two rows) and low-quality detections (bottom row) generated by our method on the InfDet dataset.

Fig. 9. Qualitative examples of the optical flow generated by the TV-L1 (second row) and FEN (third row). The first row shows the corresponding original
infrared images.
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TABLE VI
COMPARISONS OF DIFFERENT OPTICAL FLOW ESTIMATORS.

Model Model Size FLOPs
FlowNetS [10] 38.67M 8.9G
FlowNetC [10] 39.17M 11.1G

FlowNetSD [11] 45.37M 12.1G
LiteFlowNet v1 [62] 5.37M 18.9G
LiteFlowNet v2 [63] 6.42M 7.3G
LiteFlowNet v3 [64] 5.28M 9.9G

FEN 3.41M 4.4G

although there is some ambiguity in the boundary determina-
tion of the ‘fight’ action, the model still works well. It is worth
noting that the ‘drop’ actions shown in the third row have a
serious occlusion problem and the amplitude of the actor is not
obvious enough. At the same time, the interval between the
two actions is very short, which makes the detection difficult.
Due to the similarity of the intermediate frames, a false alarm
appears. However, our model still matches the real actions.

2) The estimated optical flow: We visualized the optical
flow predictions in Fig. 9. The first row shows infrared images,
while the second row shows the optical flow calculated by the
TV-L1 algorithm according to the current frame and the next
frame. The third row shows optical flow images estimated
by the FEN. It can be seen that the optical flow calculated
by the TV-L1 algorithm involves all pixels, but at the same
time, it also introduces many noises, which is harmful to
action recognition. On the contrary, the optical flow estimation
module that we optimize together with the entire network will
focus on the vicinity of the action occurring.

F. Extended experiments for infrared recognition

To compare the effectiveness of our feature representation
with other methods in the infrared domain, we conduct extend-
ed experiments on InfAR [5] and Infrared-Visible [61], both of
which are broadly used by infrared action recognition methods.
The frame resolution for both two datasets is 293×256, which
is the same as InfDet. We average the output action scores of
the model over time and remove the original post-processing
operations so that it can be used for action recognition. For a
fair comparison, we unfreeze the parameters of 3D CNNs and
fine-tune them on the target dataset.

1) Experiments on Infrared-Visible: Table VII shows the
results on the Infrared-Visible dataset. All the methods use
infrared data or optical flow generated from infrared data.
The PM-GANs trains a generator to obtain fully-modal rep-
resentation, which includes the infrared feature and visible
feature. It gets a higher performance thanks to the visible
information. The performance of our method is 88.18%, which
is higher than the state-of-the-art PM-GANs [61] by 10.18%.
We also utilize the fixed I3D and just fine-tune the last
classification layer, and it achieves 78.9% top-1 accuracy,
which is better than the previous state-of-the-art method
(78%) and two-stream methods. Therefore, we can conclude
that the I3D pre-trained on Kinetics is powerful to capture
motion information, even applied to infrared videos. In order

to remove the performance gain brought by the powerful
I3D, we separately train the I3D network for infrared action
recognition. Specifically, we load the weights pre-trained on
Kinetics-400 and use SGD to optimize all the parameters by
300 epochs. As can be seen from TableVII, just using I3D
can get a 6% improvement compared with PM-GANs, and
our method can further improve performance by 4.18%, which
shows the superiority of our feature representation.

TABLE VII
COMPARISONS OF DIFFERENT METHODS ON THE INFRARED-VISIBLE
DATASET.‘*’ DENOTES THE MODEL IS NOT FINE-TUNED EXCEPT THE

FINAL CLASSIFICATION LAYER.

Method Accuracy(%)
iDT [24] 72.33
C3D [2] 69.67

Two-stream 2D-CNN [5] 68.00
Two-stream 3D-CNN [22] 74.67

PM-GANs [61] 78.00
*I3D [14] 78.90
I3D [14] 84.00

Ours 88.18

2) Experiments on InfAR: We train and test our model
following the suggestions in [5], and the results are shown in
Table VIII. For CDFAG [23], it has done a lot of experiments,
and each result has the upper and lower bounds of the
performance. What we list in the table is the upper bound of
the best results in all experiments. Our method outperforms all
the previous networks, including that using traditional features
[20], [24], general two-stream networks [5], [22], three-stream
[3], and even four-stream networks [25].

TABLE VIII
COMPARISONS OF DIFFERENT METHODS ON THE INFAR DATASET.

Method Average accuracy(%)
HOF [5] 68.58
DT [20] 68.66
iDT [24] 71.83

Two-stream 2D-CNN [5] 76.66
Two-stream 3D-CNN [22] 77.50

CDFAG [23] 78.55
TSTDDs [3] 79.25

Four-stream CNN [25] 83.50
Ours 84.25

V. CONCLUSION

In this paper, we first explore temporal action detection
in the low-light environment. We collect a temporal action
detection dataset, which is densely sampled from the night
environment, to promote future researches for this task. We
generalize the temporal action detection task from the visible
domain to the infrared domain and commit to narrow the gap
between the two modalities. In our framework, we design a
light Flow Estimation Network for generating optical flow and
we jointly train the flow loss with snippet-level classification
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loss. Furthermore, a Selective Cross-stream Attention module
is proposed to automatically select and combine different
streams. The experiments show that the proposed method
achieves state-of-the-art performance on the infrared temporal
action detection task and infrared action recognition task,
which demonstrate the effectiveness of our model.
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